

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	GridCompute 0.2 documentation

GridCompute’s documentation

GridCompute is an open-source cross-platform tool that implements quickly distributed computing over a local grid.

The objective is to distribute resource intensive calculations over a local network to greatly reduce time needed, with a minimal work required for implementing it.

It can be particularly useful for engineering companies or universities.

Please see below useful links.

	Documentation:	http://gridcompute.readthedocs.org

	Source code:	http://github.com/borisd13/GridCompute

	Binaries:	http://github.com/borisd13/GridCompute/releases

For any question, please contact the author Boris Dayma at boris.dayma@gmail.com

Contents

	Overview
	Description

	Simple Workflow

	Applications of interest

	Interface functionalities

	Tutorial
	Create GridCompute database

	Set-up of GridCompute

	Test GridCompute

	Specifications
	Detailed workflow

	Architecture of shared folder

	Architecture of Mongo Database

	Application-specific scripts

	Main code layout

	Development
	Requirements

	Build application

	Build documentation

	Execute application

	Source code layout
	main.py

	g_config.py

	g_interface.py

	g_server_management.py

	setup.py

	database_management.py

	License
	GridCompute

	Third-party tools

Many thanks to below people who contributed to the development of the program:

	Bruno Guigon

	Vianney Da Costa

 Copyright 2014, Boris Dayma.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	GridCompute 0.2 documentation

Overview

Description

GridCompute is a cross-platform tool that implements quickly distributed computing over a local grid.

Gridcompute is easy to setup. You just need a shared folder and a database server.
It can be adapted to any application through the use of python scripts.

Simple Workflow

The applicaiton follows the workflow:

	send calculations to the network

	scan network for calculations to perform, execute them and send results to network

	retrieve results

A very simplified workflow is represented herebelow:

[image: simple workflow]

For more details, refer to Specifications.

Applications of interest

Software can be used easily if:

	Calculations performed can be divided into multiple independent calculations, even if a final step is required to merge all results.

	Calculations can be started through the use of an external command line or python script.

	Calculations do not interfere with user interface, ie graphic, mouse, keyboard...

Interface functionalities

GridCompute interface has following functionalites:

	Submit cases to the network.

	Specify number of processes my computer can use to process cases from the network.

	Modify the number of processes during execution to pause, resume or cancel processes.

	Monitor status of user cases.

	Monitor status of user processes.

	Create a report of all the cases from same user group present on the network.

	Detect failed processes and retry to launch them.

	Specify which machines can perform calculations depending on application required.

 Copyright 2014, Boris Dayma.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	GridCompute 0.2 documentation

Tutorial

Note

This section only intends to give a quick presentation of GridCompute through the
use of a very simple demo application Random Counter.

This application takes a file as input, performs a countdown from a random number, and returns the
time needed for that countdown, along with the name of the input file. This output is then added to
a file in the home directory of the person who requested the process.

Create GridCompute database

GridCompute requires a MongoDB [http://www.mongodb.org/] server to store all cases related information.

Create a MongoDB server

In this section, we are going to detail two possible scenarios: using a private server or using a specialized host.

Option 1: Create a private MongoDB server

In this example, we are going to assume that you want to use a Ubuntu server [http://www.ubuntu.com/server] in a virtual machine created with VirtualBox [https://www.virtualbox.org/]. You can adapt it to install on a different OS and use of a virtual machine is only optional.

	Install VirtualBox [https://www.virtualbox.org/].

	Create a virtual machine in VirtualBox with at least 512MB RAM and 8Go drive.

	Install Ubuntu server [http://www.ubuntu.com/server]. Activate option “Open-SSH Server” during installation for convenient access to your server.

	Set up port forwarding in VirtualBox:

	host=22 (or 2222 for Ubuntu host), guest=22 if you want to access to your machine by ssh

	host=27017, guest=27017 for access to Mongo database

	From host, connect to guest through ssh.

On Ubuntu: ssh -p 2222 GUEST_USERNAME@HOST_MACHINE_NAME

On Windows: you can use a program such as putty [http://www.chiark.greenend.org.uk/~sgtatham/putty/]

	Update Ubuntu packages and reboot.

>>> sudo apt-get update
>>> sudo apt-get upgrade
>>> sudo sudo reboot

	Install MongoDB per instructions from MongoDB tutorial [http://docs.mongodb.org/manual/tutorial/install-mongodb-on-ubuntu/].

	In file /etc/mongod.conf, comment line bindip [...]

	Run sudo service mongod start

	Create a new database called gridcompute

>>> mongo
>>> use gridcompute

	Add the user you will use from gridcompute. For example, for user Group1 with password gridcompute:

>>> db.createUser({user:"Group1", pwd:"gridcompute", roles:["readWrite"]})
>>> quit()

	Set up MongoDB server.

Option 2: Use a specialized host

MongDB server instance can be hosted by a specialized website such as Compose [https://www.compose.io/mongodb/] or Mongolab [https://mongolab.com/].

	Register to the host of your choice.

	Create a new database named “gridcompute”.

	Add the user you will use from gridcompute. For example, user Group1 with password gridcompute.

	Set up MongoDB server.

Set up MongoDB server

The main purpose is only to define what version of gridcompute can work with the database.

Note

This section is optional. If you don’t set up the database, a warning message will appear to notify you that the program version is not controlled by the server but the program will still work.

	Open script source/admin/database_management.py.

	Edit the variables under if __name__ == "__main__".

	Run the script with python 3.

Set-up of GridCompute

Before starting the program, you should follow these steps:

	Download latest version of GridCompute binary [https://github.com/borisd13/GridCompute/releases]. Choose the version associated to your OS.

	Create a shared folder accessible (read and write) to every person that will use the program.

	Copy folder template/Shared_Folder from source code [https://github.com/borisd13/GridCompute] to the shared folder you are going to use with GridCompute.

	At the root folder of GridCompute executable, there should be a file server.txt. Open it and copy the path to GridCompute shared folder. Ex: \\Server010\...\Shared_Folder.

	Edit settings.txt from the template folder with applicable parameters (refer to settings.txt specifications)

	Edit Software_Per_Machine.csv from the template folder (for more details refer to Software_Per_Machine.csv specifications):

	Add the name of your machine in the first column

	Enter 1 for application Random Counter on the row corresponding to your machine name

	Save as csv

Test GridCompute

The following section will give you a brief overview of the program.

	Run GridCompute executable. You will see the main window of the program.

	Check at the bottom of the application that you can run Random_Counter as selected in Software_Per_Machine.csv.

	Click on the application checkbox and select Random Counter.

	Click on add cases and select 10-20 files (they will not be modified).

	Check that cases have been added to the interface.

	Click on submit list to server and confirm.

	Click on the tab my cases and button refresh now. You will see the status of all your cases.

	Increase the number of processes allowed to run.

	While process are running, click on refresh now to see their status.

	Go to the tab my processes to see what is happening on your computer.

	Random Counter demo application has been set-up so that outputs are added to the file gridcompute_output.txt present in your home folder.

 Copyright 2014, Boris Dayma.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	GridCompute 0.2 documentation

Specifications

Detailed workflow

The sequence of events is represented with numbered arrows herebelow:

[image: detailed workflow]

Architecture of shared folder

In the same folder as main script or program, there is a file named “server.txt” which contains only the network path of main shared folder between all users used by GridCompute (folder that contains “Settings”, “Cases” and “Results”). Ex: \\Server010\\Folder\\GridCompute.

This shared folder has following architecture:

	Settings folder (to be at least read-only for users, read-write for administrators)

	Software_Per_Machine.csv: This file contains machine names and corresponding applications installed (using unique ID per application). The program looks for the 1 in the matrix.

Ex:

Machine name,Software 1,Software 2,Software 3
Machine 1,1,1,1
Machine 2,0,1,0
Machine 3,0,0,0

Note

This file is only used to detect what machine can run process functions. All machines can submit or receive cases.

	settings.txt: contains parameters of database on each line under the form: parameter name: value. Parameters to define are the following:

	mongodb server: address of the mongo instance including connection port containing gridcompute database

Ex: mongodbserver.com:888 or 10.0.0.1:888 or Machine123:888

	user group: Login used to connect on mongo database.

	password: Password used to connect on mongo database.

	instance: Data instance to consider. Example: 0 or debug.

	Applications folder

	One file per application with unique ID (ex: Software 1).

Warning

The folder name cannot contain a dot.

It contains:

	send.py: Defines how to select input and send calculations.

	process.py: Will run when analysis are executed based on input received and will create output files.

	receive.py: Will run when output files are present on server.

More details are provided in Application-specific scripts.

	Cases folder: Contains one folder per user and inside, one folder per machine (so that user can see easily his files) storing each case as a zip file that has all input files/folders required.

	Results folder: Contains one folder per user and inside, one folder per machine storing each result as a zip file that has all output files/folders required.

Note

A template folder is present in source code in template folder and can be used to set up the shared folder.

Architecture of Mongo Database

GridCompute communicates with a mongo database that contains all the details on cases. Following entries are present:

	collection cases
	_id: Unique Object Id based on timestamp of the case.

	user_group: User group. Ex: ENGINEERING DEPARTMENT.

	instance: Instance used to isolate grids. Ex: 0 or debug.

	status: Current status of the case. It can be to process, processing, processed or received.

	last_heartbeat: Timestamp of last heartbeat sent to notify the database that the process is still alive.

	application: Application associated to the case.

	path: Path on file server refering to input/output case.

	origin: Machine/User who submitted the case to the database.
	machine

	user

	time
	start: Time the case has been submitted to server.

	end: Time the results have been retrieved from server.

	processors
	processor_list: List of Machine/Users who tried to process the case (some attempts to process may have failed).
	machine

	user

	time (start and end) for the last attempt to process
	start: Time of the last attempt to process.

	end: Time the process returned.

	collection versions (optional)
	_id: Versions of program recognized by database.

	status: Can be either allowed, warning or refused.

	message: Message to be displayed when status is not allowed.

Application-specific scripts

Applications can easily take advantage of distributed computing by creating 3 scripts, as detailed in following sections.

Note

Some examples are present in template/Shared_Folder/Settings/Applications.

send.py

This script is executed when submitting cases to server. It takes as input a file selected by the user and returns one or several cases to submit to the server.

	
send.select_input_files(filepath)

	Submit a case to the grid.

This function returns, from a selected file, one or several cases to run.
Each case can be made of several input files.

	Parameters:	filepath (str) – Path of the file selected.

	Returns:	str list: A list (or tuple) of cases. Each case is a list (or tuple) of input files required to process a case.

process.py

This script is used to process cases. Its input is the ordered list of files submitted in send.py script. At the end of execution, a list of output files is returned, which is submitted to the server.

	
process.process_case(input_files)

	Process a case and return its results.

This function process a case from the grid and returns a list of output files that are
sent back to the server. Process is executed in a temporary folder where all files are
copied.

	Parameters:	input_files (str list) – ordered list (or tuple) of input files path.

	Returns:	str list: An ordered list (or tuple) of output files to return to the server.

receive.py

This script is used to receive cases that have been processed, ie to specify what we want to do with the output files returned from process.py script.

	
receive.receive_case(output_files)

	Receive a case from the grid.

This function receives a case that has been processed on the grid.
Process is executed in a temporary folder where all files are copied.

	Parameters:	output_files (str list) – ordered list (or tuple) of output files path.

	Returns:	None.

Main code layout

For details on GridCompute source code layout, refer to Source code layout.

 Copyright 2014, Boris Dayma.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	GridCompute 0.2 documentation

Development

This section details how to use source code for developers. You can get latest code and binaries at:
http://github.com/borisd13/GridCompute

Requirements

The following is required to use the source code:

	python version 3.4.0 or superior [https://www.python.org/]

	tkinter (should be included in python installation)

	pip for python3 (should be included in python installation)

	pymongo version 2.7.1 or superior [http://api.mongodb.org/python/current/]

	psutil version 2.1.1 or superior [https://github.com/giampaolo/psutil]

Install requirements on Ubuntu

Enter below commands in prompt:

>>> sudo apt-get install python3-pip
>>> sudo pip3 install pymongo
>>> sudo pip3 install psutil
>>> sudo apt-get install python3-tk

Install requirements on Windows

Follow below instructions:

	download and install python 3.4.1 (64 bit version) [https://www.python.org/]. Make sure to enable “Add python.exe to Path”

	download and install pymongo [https://pypi.python.org/pypi/pymongo/]

	download and install psutil [https://pypi.python.org/pypi/psutil/2.1.1]

Build application

GridCompute is meant to be run easily on computers that don’t have any python environment. This is achieved by creating binaries of the application with the help of cx_Freeze [http://cx-freeze.sourceforge.net/].

Note

Building the application is not required for executing the program.

To build the application:

	Use the OS you plan to build the application for.

	Install cx_Freeze from source [https://bitbucket.org/anthony_tuininga/cx_freeze/src].

Warning

On Ubuntu, you might need to apply fix for issue 32 [https://bitbucket.org/anthony_tuininga/cx_freeze/issue/32/cant-compile-cx_freeze-in-ubuntu-1304#comment-11181579].

On Windows, you may have to install Visual Studio C++ 2010.

	Go to the main folder of GridCompute source code and run python setup.py build.

Warning

On Ubuntu, you will also need to apply fix for issue 95 [https://bitbucket.org/anthony_tuininga/cx_freeze/issue/95/].

Build documentation

Documentation is generated through the use of sphinx [http://sphinx-doc.org/]. To build documentation, you need to install following dependencies:

>>> pip3 install sphinx
>>> pip3 install sphinxcontrib-napoleon
>>> pip3 install sphinx-rtd-theme

You can then go to docs folder and run make html.

Execute application

From source, run python 3 on main.py.

From executable, run GridCompute executable.

 Copyright 2014, Boris Dayma.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	GridCompute 0.2 documentation

Source code layout

The source code of GridCompute is split into following modules:

main.py

This module is the start-up script used to launch GridCompute.

It first ensures that there is only one instance running, then creates the interface and initializes all parameters required to run the program. To finish, it runs the main loop associated to interface.

	
main.ensure_single_instance(current_pid, event_queue)

	Ensure that only one instance of the program is running.

Check current pid against a configuration file that will contain pid of other running instance if any.

	Parameters:	
	current_pid (int) – pid of current process.

	event_queue (Queue) – queue of events to process by gui.

	
main.start(gui, current_pid)

	Start the program.

Ensures there is only one instance, initialize all server related parameters and populate interface.

	Parameters:	
	gui (GUI) – GUI instance handling program interface.

	current_pid (int) – pid of main thread.

g_config.py

This module gathers configuration variables used in the other modules.

It is used to share global variables and edit configuration variables easier.

	
g_config.program_name

	Name of the program.

	
g_config.version

	Current version.

	
g_config.author

	Author of the program.

	
g_config.copyright

	Copyright.

	
g_config.title_windows

	Title displayed on windows.

	
g_config.max_number_process

	Maximal number of parallel process that can be executed on this computer.

	
g_config.gui_refresh_interval

	Refresh rate of interface in milliseconds.

	
g_config.db_connect_frequency

	Time in seconds before database is accessed again if no case/result is found.

	
g_config.db_heartbeat_frequency

	Frequency in seconds that heartbeat are sent on running processes to notify
database that they are still alive.

	
g_config.db_heatbeat_dead

	Time in seconds without heartbeat after which we consider a process is dead.

	
g_config.daemon_pause

	Time in seconds between each process of daemons.

	
g_config.log_path

	Path of the log file.

	
g_config.pid_file

	Path of the file keeping pid of the program to ensure there is only one single instance
running.

g_interface.py

This module contains all GUI functionalities.

It generates the main interface and handles any event that needs to be
communicated to the user.

	
class g_interface.GUI

	Class handling GridCompute interface.

It contains every parameter and module required for GUI. At creation, it displays a progress bar.

	Parameters:	
	root – main Tk instance

	application – application selected in gui

	app_combobox – widget associated with application

	cases_dict (dict) – dictionary where key is the id of tree item and value
is the list of input files associated to the case

	cases_refresh_label – label identifying time of refresh of “my cases”

	cases_status_label – label identifying status of refresh of “my cases”

	dedicated_process – number of dedicated process selected in gui

	event_queue – queue of events to process by gui

	log – gui element associated to logging

	my_process_pid_id (dict) – dictionary of pid to gui id for treeview in “my processes”

	progress_bar – progress bar in progress window

	progress_label – text present on progress window

	progress_window – top level window showing progress of current task
set to None if progress window not existing or closed

	server – Server instance containing main functionalities

	tree_cases – widget containing cases to submit

	tree_my_cases – widget containing “my cases”

	tree_my_process – widget containing “my processes”

	
add_cases()

	Display a window to select cases to submit to server and adds them on the list.

	
askokcancel(msg)

	Ask a question to user.

	Parameters:	msg (str) – Message to be displayed.

	Returns:	True if user enters “ok”, False otherwise.

	Return type:	bool

	
create_progress_window(progress_mode, progress_text, progress_max=100)

	Create a progress window.

The progress window can be controlled afterwards through the event_queue parameter.
Refer to function “handle_next_event”.

	Parameters:	
	progress_mode (str) – “determinate” if progress level evolution needs to be controlled or “indeterminate”.

	progress_text (str) – text displayed initially on the progress window.

	progress_max (int) – argument equal to maximal progress value when complete.

	
create_report()

	Create a full report from database containing all cases from same “user group”.
Ask user where he wants to save the report.

	
error(msg)

	Display error on screen.

	Parameters:	msg (str) – Message to be displayed.

	
exit_program()

	Communicate to processes to exit program.

	
handle_next_event()

	Handles the next event from communicated to the GUI through event_queue variable.

Each element in event_queue is a dictionary. Action performed depends on value of type key:

	log_file_only: log a message in the log file, no display in gui

	warning: display a warning

	info: display an information in gui, optionally creating an info box

	error: display an error

	critical: display an error and exit program

	change progress max: change value of progress window corresponding to completion

	change progress: modify progress bar level and text

	close progress: close progress window

	add case: add a case in “send cases” tab

	submitted case: show a case as submitted

	terminate process?: ask user if he wants to terminate all processes

	send answer through the connection pipe to daemon process

	add my case: add a case in “my cases” tab

	add my process: add a process in “my processes” tab

	remove my process: remove a process from “my processes” tab

	change my process: change the status of a process in “my processes” tab

	populate: GUI can be fully populated

	exit: close main window

	Raises:	queue.empty: event_queue is empty, there are no more events to process. –

	
info(msg)

	Display info on screen

	Parameters:	msg (str) – Message to be displayed.

	
link_server(server)

	Associate GUI to a Server instance.

	Parameters:	server – Server instance.

	
open_about()

	Display program information.

	
open_help()

	Display a help message.

	
open_license()

	Display licenses used by the program.

	
populate()

	Populate GUI during loading of program.

	
refresh()

	Refresh GUI at regular intervals.

	
refresh_my_cases()

	Refresh the list of “my cases”.

Access database and display details of user cases that have not been received yet.

	
remove_selected()

	Removes selected cases to submit from the list.

	
submit_to_server()

	Send all cases (not yet submitted) from the list to the server.

	
warning(msg)

	Display warning on screen

	Parameters:	msg (str) – Message to be displayed.

	
g_interface.init_log()

	Initialize logging in file.

Create necessary directory structure and remove previous log file.

	
g_interface.write_log(log_message, gui_log=None)

	Write log messages in log file and in GUI.

	Parameters:	
	log_message – message to be displayed.

	gui_log – widget receiving log message.
None if message not to be displayed in gui.

g_server_management.py

This module contains all server related functionalities.

It creates server variables associated to file server and mongo database
and handle the communication with them.

	
class g_server_management.Server(event_queue, dedicated_process)

	Class handling server-related functionalities.

File server path is taken from “server.txt” present at root of program. Settings are taken from
“settings.txt” present on the file server.

Server properties are set at initialization.

	Parameters:	
	event_queue – queue of events to process by gui

	gui_dedicated_process – number of dedicated process selected in gui

	daemon_dedicated_process – number of dedicated process communicated to daemon process

	exit_program – variable scanned by daemons to know when to exit

	gui_answer – notify when gui answered a question

	server_path – path of file server as defined in “server.txt” file

	app_path – path of applications-specific scripts

	settings_path – path of settings.txt file

	settings – list of settings from settings.txt on file server including:

	mongodb server: Address of the mongo instance including connection port containing
“gridcompute” like mongodbserver.com:888 or 10.0.0.1:888 or Machine123:888.

	user group: Login used to connect on mongo database.

	password: Password used to connect on mongo database.

	instance: Data instance to consider like 0 or debug.

	mongodb – Connection to mongo database

	server_functions – Dictionary of application-specific scripts. The key is application name and value is
a dictionary of following keys:

	path: path of application folder

	send, process, receive: booleans corresponding to existence of these functions

	software_allowed_to_run – set of applications that can run as defined in “Software_Per_Machine.csv”

	
access_mongodb()

	Access the mongo database.

	
add_cases(files_selected, application, keep_running=True)

	Add a list of cases to interface from files selected by user.

A file selected can correspond to one or several cases to run. Each case being a list of input files.
Those cases are sent to the interface which displays the first input file of each case.
The application specific “send.py” function is used on each file selected.

	Parameters:	
	files_selected – Files selected by user

	application – Application associated to input files

	keep_running – Argument that can be associated to the state of a variable.
When this variable is False, function ends.
It is used to catch when user closes the progress window.

	
applications_with_process()

	Return a dictionary of applications that have a process function.

The key is the application name and the value is the script path.

	
applications_with_receive()

	Return a dictionary of applications that have a receive function.

The key is the application name and the value is the script path.

	
applications_with_send()

	Return a dictionary of applications that have a send function.

The key is the application name and the value is the script path.

	
create_daemons()

	Create daemons required in the application.

Two daemons are created:

	Daemon process: scans continuously database to check if there are new calculations to
perform (if number of processes selected allows it).

	Daemon receive: scans continuously database to check if there are new results to receive.

	
create_report(file_report, keep_running=True)

	Create a report of cases present on database.

Display cases and their details from database, limited to the ones from same “user group”.

	Parameters:	keep_running – Argument that can be associated to the state of a variable.
When this variable is False, function ends.
It is used to catch when user closes the progress window.

	
exit_processes()

	Terminate program.

Ensure daemon process (and its child processes) and daemon receive terminate properly.

	
get_settings()

	Initialize settings variable from “settings.txt” present on server.

	
get_software_allowed_to_run()

	Return the list of software allowed to run on this machine per “Software_Per_Machine.csv”
present on file server.

	
handle_software_permissions()

	Verify that mongo database allows current version of program to run.

This is based on the collection “versions” present in mongo database.
If “versions” collection is not present, a warning is displayed.

	
notify_number_process_daemon(*args)

	Notify the daemon process of a change of number of processes selected in GUI.

	
refresh_my_cases(keep_running=True)

	Refresh “my cases” list.

Access mongo database to display all user cases that have not been totally processed yet (ie not received by user).

	Parameters:	keep_running – Argument that can be associated to the state of a variable.
When this variable is False, function ends.
It is used to catch when user closes the progress window.

	
scan_applications()

	Scan application specific scripts present on file server.

	
submit_to_server(cases_to_submit, application, keep_running=True)

	Submit cases to the server.

Input files are zipped and copied to the file server. Cases are entered in mongo database.

	Parameters:	
	cases_to_submit – List of cases. Each case is a list of input files associated to a case.

	application – Application associated to input files.

	keep_running – Argument that can be associated to the state of a variable.
When this variable is False, function ends.
It is used to catch when user closes the progress window.

	
g_server_management.check_quit_program(exit_program)

	Function used by daemons to check if they need to terminate and kill their child processes.

	Parameters:	exit_program – Variable scanned by daemons to know when to exit.

	
g_server_management.launch_process(case, event_queue, server_path, settings)

	Launch one process from database.

Mongo database is updated when process finishes.

	Parameters:	
	case – case to process obtained from mongo database.

	event_queue – queue of events to process by gui.

	server_path – path of file server as defined in “server.txt” file.

	settings – list of settings from settings.txt on file server.

	
g_server_management.refresh_status_daemon_process(alive_process, dedicated_process, event_queue, exit_program, gui_answer, paused_process)

	Refresh status variables used by daemon process.

	Parameters:	
	alive_process – List of processes alive.

	dedicated_process – Number of dedicated process selected in gui.

	event_queue – Queue of events to process by gui.

	exit_program – Variable scanned by daemons to know when to exit.

	gui_answer – Notify when gui answered a question.

	paused_process – List of processes currently on pause.

	
g_server_management.return_module(application, function)

	import app-specific function send, process or receive

	
g_server_management.run_daemon_process(applications_with_process, dedicated_process, event_queue, exit_program, gui_answer, server_path, settings, software_allowed_to_run)

	Run “daemon process” that launches new processes when possible.

Daemon process runs continuously and check on database if processes are available to launch when user allows it.

	Parameters:	
	applications_with_process – dictionary of applications that have a process function

	dedicated_process – number of dedicated process selected in gui

	event_queue – queue of events to process by gui

	exit_program – variable scanned by daemons to know when to exit

	gui_answer – notify when gui answered a question

	server_path – path of file server as defined in “server.txt” file

	settings – list of settings from settings.txt on file server

	software_allowed_to_run – set of applications that can run as defined in “Software_Per_Machine.csv”

	
g_server_management.run_daemon_receive(applications_with_receive, event_queue, exit_program, server_path, settings)

	Run “daemon receive” that retrieve back cases from server after they have been processed.

Daemon receive runs continuously and check on database if output files are available.

	Parameters:	
	applications_with_receive – dictionary of applications that have a process function.

	event_queue – queue of events to process by gui.

	exit_program – variable scanned by daemons to know when to exit.

	server_path – path of file server as defined in “server.txt” file.

	settings – list of settings from settings.txt on file server.

setup.py

This script is used for building the executuble with cx_Freeze.

Please refer to the section “Development” of the documentation for building the application.

database_management.py

This module contains administrator functions for database management.

	
database_management.set_up_mongodb_server(mongodb_server, login, password, versions)

	Sets up a mongodb server for GridCompute.

Mongo database “gridcompute” is initialized and the “versions” collection is created to specify
the program versions that are authorized by the database.

The “gridcompute” database must be present on the server. Any collection in it will be removed.

	Parameters:	
	mongodb_server – Address of the mongo instance including connection port containing
gridcompute database like mongodbserver.com:888 or 10.0.0.1:888
or Machine123:888

	login – Login used to connect on mongo database.

	password – Password used to connect on mongo database.

	versions – List of versions of gridcompute that the mongo database recognizes defined by:

	_id: version number (ex: ‘0.1’).

	status: either “allowed”, “warning” or “refused”.

	message: message to be displayed when status is not “allowed” like:[{'_id':'0.1', status:"warning", message:"Beta version},
 {'_id':'1.0', status:"allowed"}]

 Copyright 2014, Boris Dayma.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	GridCompute 0.2 documentation

License

GridCompute

Copyright 2014 Boris Dayma

GridCompute is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, version 3 of the License.

GridCompute is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GridCompute. If not, see <http://www.gnu.org/licenses/>.

For any question, please contact Boris Dayma at boris.dayma@gmail.com

Third-party tools

Please note that this program uses 3rd party tools whose licenses
have been reproduced herebelow.

Python

Copyright © 2001-2014 Python Software Foundation. All rights reserved.
Copyright © 2000 BeOpen.com. All rights reserved.
Copyright © 1995-2000 Corporation for National Research Initiatives. All rights reserved.
Copyright © 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

PSF LICENSE AGREEMENT FOR PYTHON 3.4.1

This LICENSE AGREEMENT is between the Python Software Foundation (“PSF”), and the Individual or Organization (“Licensee”) accessing and otherwise using Python 3.4.1 software in source or binary form and its associated documentation.
Subject to the terms and conditions of this License Agreement, PSF hereby grants Licensee a nonexclusive, royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly, prepare derivative works, distribute, and otherwise use Python 3.4.1 alone or in any derivative version, provided, however, that PSF’s License Agreement and PSF’s notice of copyright, i.e., “Copyright © 2001-2014 Python Software Foundation; All Rights Reserved” are retained in Python 3.4.1 alone or in any derivative version prepared by Licensee.
In the event Licensee prepares a derivative work that is based on or incorporates Python 3.4.1 or any part thereof, and wants to make the derivative work available to others as provided herein, then Licensee hereby agrees to include in any such work a brief summary of the changes made to Python 3.4.1.
PSF is making Python 3.4.1 available to Licensee on an “AS IS” basis. PSF MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITATION, PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON 3.4.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.
PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 3.4.1 FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 3.4.1, OR ANY DERIVATIVE THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.
This License Agreement will automatically terminate upon a material breach of its terms and conditions.
Nothing in this License Agreement shall be deemed to create any relationship of agency, partnership, or joint venture between PSF and Licensee. This License Agreement does not grant permission to use PSF trademarks or trade name in a trademark sense to endorse or promote products or services of Licensee, or any third party.
By copying, installing or otherwise using Python 3.4.1, Licensee agrees to be bound by the terms and conditions of this License Agreement.

Pymongo

Copyright 2008 - 2014, MongoDB, Inc

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.

You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0

Zlib

Copyright (C) 1995-2011 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
 claim that you wrote the original software. If you use this software
 in a product, an acknowledgment in the product documentation would be
 appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
 misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu

Cx_Freeze

* Copyright © 2007-2014, Anthony Tuininga.
* Copyright © 2001-2006, Computronix (Canada) Ltd., Edmonton, Alberta, Canada.
* All rights reserved.

NOTE: this license is derived from the Python Software Foundation License
which can be found at http://www.python.org/psf/license

License for cx_Freeze

1. This LICENSE AGREEMENT is between the copyright holders and the Individual
 or Organization ("Licensee") accessing and otherwise using cx_Freeze
 software in source or binary form and its associated documentation.

2. Subject to the terms and conditions of this License Agreement, the
 copyright holders hereby grant Licensee a nonexclusive, royalty-free,
 world-wide license to reproduce, analyze, test, perform and/or display
 publicly, prepare derivative works, distribute, and otherwise use cx_Freeze
 alone or in any derivative version, provided, however, that this License
 Agreement and this notice of copyright are retained in cx_Freeze alone or in
 any derivative version prepared by Licensee.

3. In the event Licensee prepares a derivative work that is based on or
 incorporates cx_Freeze or any part thereof, and wants to make the derivative
 work available to others as provided herein, then Licensee hereby agrees to
 include in any such work a brief summary of the changes made to cx_Freeze.

4. The copyright holders are making cx_Freeze available to Licensee on an
 "AS IS" basis. THE COPYRIGHT HOLDERS MAKE NO REPRESENTATIONS OR WARRANTIES,
 EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITATION, THE COPYRIGHT
 HOLDERS MAKE NO AND DISCLAIM ANY REPRESENTATION OR WARRANTY OF
 MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
 CX_FREEZE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. THE COPYRIGHT HOLDERS SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF
 CX_FREEZE FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS
 A RESULT OF MODIFYING, DISTRIBUTING, OR OTHERWISE USING CX_FREEZE, OR ANY
 DERIVATIVE THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach
 of its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any relationship
 of agency, partnership, or joint venture between the copyright holders and
 Licensee. This License Agreement does not grant permission to use
 copyright holder's trademarks or trade name in a trademark sense to endorse
 or promote products or services of Licensee, or any third party.

8. By copying, installing or otherwise using cx_Freeze, Licensee agrees to be
 bound by the terms and conditions of this License Agreement.

Computronix® is a registered trademark of Computronix (Canada) Ltd.

Psutil

psutil is distributed under BSD license reproduced below.

Copyright (c) 2009, Jay Loden, Dave Daeschler, Giampaolo Rodola'
All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

 * Redistributions of source code must retain the above copyright notice, this
 list of conditions and the following disclaimer.
 * Redistributions in binary form must reproduce the above copyright notice,
 this list of conditions and the following disclaimer in the documentation
 and/or other materials provided with the distribution.
 * Neither the name of the psutil authors nor the names of its contributors
 may be used to endorse or promote products derived from this software without
 specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

 * Redistributions of source code must retain the above copyright notice, this
 list of conditions and the following disclaimer.
 * Redistributions in binary form must reproduce the above copyright notice,
 this list of conditions and the following disclaimer in the documentation
 and/or other materials provided with the distribution.
 * Neither the name of the psutil authors nor the names of its contributors
 may be used to endorse or promote products derived from this software without
 specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 Copyright 2014, Boris Dayma.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	GridCompute 0.2 documentation

 Python Module Index

 d |
 g |
 m |
 p |
 r |
 s

 			

 		
 d	

 	
 	
 database_management	

 			

 		
 g	

 	
 	
 g_config	

 	
 	
 g_interface	

 	
 	
 g_server_management	

 			

 		
 m	

 	
 	
 main	

 			

 		
 p	

 	
 	
 process	

 			

 		
 r	

 	
 	
 receive	

 			

 		
 s	

 	
 	
 send	

 	
 	
 setup	

 Copyright 2014, Boris Dayma.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	GridCompute 0.2 documentation

Index

 A
 | C
 | D
 | E
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | V
 | W

A

 	

 	access_mongodb() (g_server_management.Server method)

 	add_cases() (g_interface.GUI method)

 	

 	(g_server_management.Server method)

 	applications_with_process() (g_server_management.Server method)

 	applications_with_receive() (g_server_management.Server method)

 	

 	applications_with_send() (g_server_management.Server method)

 	askokcancel() (g_interface.GUI method)

 	author (in module g_config)

C

 	

 	check_quit_program() (in module g_server_management)

 	copyright (in module g_config)

 	create_daemons() (g_server_management.Server method)

 	

 	create_progress_window() (g_interface.GUI method)

 	create_report() (g_interface.GUI method)

 	

 	(g_server_management.Server method)

D

 	

 	daemon_pause (in module g_config)

 	database_management (module)

 	db_connect_frequency (in module g_config)

 	

 	db_heartbeat_frequency (in module g_config)

 	db_heatbeat_dead (in module g_config)

E

 	

 	ensure_single_instance() (in module main)

 	error() (g_interface.GUI method)

 	

 	exit_processes() (g_server_management.Server method)

 	exit_program() (g_interface.GUI method)

G

 	

 	g_config (module)

 	g_interface (module)

 	g_server_management (module)

 	get_settings() (g_server_management.Server method)

 	

 	get_software_allowed_to_run() (g_server_management.Server method)

 	GUI (class in g_interface)

 	gui_refresh_interval (in module g_config)

H

 	

 	handle_next_event() (g_interface.GUI method)

 	

 	handle_software_permissions() (g_server_management.Server method)

I

 	

 	info() (g_interface.GUI method)

 	

 	init_log() (in module g_interface)

L

 	

 	launch_process() (in module g_server_management)

 	link_server() (g_interface.GUI method)

 	

 	log_path (in module g_config)

M

 	

 	main (module)

 	

 	max_number_process (in module g_config)

N

 	

 	notify_number_process_daemon() (g_server_management.Server method)

O

 	

 	open_about() (g_interface.GUI method)

 	open_help() (g_interface.GUI method)

 	

 	open_license() (g_interface.GUI method)

P

 	

 	pid_file (in module g_config)

 	populate() (g_interface.GUI method)

 	process (module)

 	

 	process_case() (in module process)

 	program_name (in module g_config)

R

 	

 	receive (module)

 	receive_case() (in module receive)

 	refresh() (g_interface.GUI method)

 	refresh_my_cases() (g_interface.GUI method)

 	

 	(g_server_management.Server method)

 	refresh_status_daemon_process() (in module g_server_management)

 	

 	remove_selected() (g_interface.GUI method)

 	return_module() (in module g_server_management)

 	run_daemon_process() (in module g_server_management)

 	run_daemon_receive() (in module g_server_management)

S

 	

 	scan_applications() (g_server_management.Server method)

 	select_input_files() (in module send)

 	send (module)

 	Server (class in g_server_management)

 	

 	set_up_mongodb_server() (in module database_management)

 	setup (module)

 	start() (in module main)

 	submit_to_server() (g_interface.GUI method)

 	

 	(g_server_management.Server method)

T

 	

 	title_windows (in module g_config)

V

 	

 	version (in module g_config)

W

 	

 	warning() (g_interface.GUI method)

 	

 	write_log() (in module g_interface)

 Copyright 2014, Boris Dayma.
 Created using Sphinx 1.2.2.

 _images/workflow_detailed.png
User

Step 1: Submit case

Scan continuously
server for calculations
to perform

Select Application
&
main input

. J
N
Execute
app-specific script
“send.py" and
returns inputs
required for each
case
L=

P S

Create unique zip
file containing all
files retuned by
“send.py"

3:

Step 2: Process case

Retrieve case input
and associated zip
file

Create temporary
folder and
uncompress zip file

Database Server §
Send case details (Not hosted/imanaged Execute
(ID, app...) to by client) app-specific

Database server “process.py" and
(files will not be return output files

transmitted)

Compress all output
files into zip file

Cases data (ID,
status, app...)

Scan
continuously
server for
results

Update case Send zip
status as output files
processed to file server

File Server
(Client hosted)

Step 3: Receive case result

1 3
Retrieve case results 4)

and associated zipfle g

Cases (zip
files) stored on
server

14

Create temporary folder
and uncompress zip file

Results (zip
files) stored on
server

i 4

Execute app-specific
“receive.py”

Mark case as complete

_images/workflow_simple.png
User

Create cases

.

Upload to
server

Scan server
for results

Retrieve
results

Cases
stored on
server

Results
stored on
server

Scan server for
calculations to
perform

Retrieve cases and
perform
calculations

Upload results to
server

_static/comment.png

_static/minus.png

_static/comment-close.png

_static/up.png

_static/plus.png

_static/up-pressed.png

search.html

 Navigation

 		
 index

 		
 modules |

 		GridCompute 0.2 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Boris Dayma.
 Created using Sphinx 1.2.2.

_static/down-pressed.png

_static/comment-bright.png

_static/file.png

_static/ajax-loader.gif

_static/workflow_simple.png
User

Create cases

.

Upload to
server

Scan server
for results

Retrieve
results

Cases
stored on
server

Results
stored on
server

Scan server for
calculations to
perform

Retrieve cases and
perform
calculations

Upload results to
server

_static/down.png

_static/workflow_detailed.png
User

Step 1: Submit case

Scan continuously
server for calculations
to perform

Select Application
&
main input

. J
N
Execute
app-specific script
“send.py" and
returns inputs
required for each
case
L=

P S

Create unique zip
file containing all
files retuned by
“send.py"

3:

Step 2: Process case

Retrieve case input
and associated zip
file

Create temporary
folder and
uncompress zip file

Database Server §
Send case details (Not hosted/imanaged Execute
(ID, app...) to by client) app-specific

Database server “process.py" and
(files will not be return output files

transmitted)

Compress all output
files into zip file

Cases data (ID,
status, app...)

Scan
continuously
server for
results

Update case Send zip
status as output files
processed to file server

File Server
(Client hosted)

Step 3: Receive case result

1 3
Retrieve case results 4)

and associated zipfle g

Cases (zip
files) stored on
server

14

Create temporary folder
and uncompress zip file

Results (zip
files) stored on
server

i 4

Execute app-specific
“receive.py”

Mark case as complete

